3 research outputs found

    Isogeometric analysis applied to frictionless large deformation elastoplastic contact

    Get PDF
    This paper focuses on the application of isogeometric analysis to model frictionless large deformation contact between deformable bodies and rigid surfaces that may be represented by analytical functions. The contact constraints are satisfied exactly with the augmented Lagrangian method, and treated with a mortar-based approach combined with a simplified integration method to avoid segmentation of the contact surfaces. The spatial discretization of the deformable body is performed with NURBS and C0-continuous Lagrange polynomial elements. The numerical examples demonstrate that isogeometric surface discretization delivers more accurate and robust predictions of the response compared to Lagrange discretizations

    Simulation of contact between subsea pipeline and trawl gear using mortar-based isogeometric analysis

    Get PDF
    This paper focuses on the application of mortar-based isogeometric analysis to predict contact between subsea pipelines and trawl gear. The contact constraints are satisfied exactly with the augmented Lagrangian method, and treated with a mortar- based approach combined with a simplified integration method to avoid segmentation of the contact surfaces. The spatial discretization of the deformable body is performed with NURBS and C0-continuous Lagrange polynomial elements. The numerical examples demonstrate that isogeometric surface discretization delivers more accurate and robust predictions of the response compared to Lagrange discretizations

    Isogeometric analysis applied to frictionless large deformation elastoplastic contact

    No full text
    This paper focuses on the application of isogeometric analysis to model frictionless large deformation contact between deformable bodies and rigid surfaces that may be represented by analytical functions. The contact constraints are satisfied exactly with the augmented Lagrangian method, and treated with a mortar-based approach combined with a simplified integration method to avoid segmentation of the contact surfaces. The spatial discretization of the deformable body is performed with NURBS and C0-continuous Lagrange polynomial elements. The numerical examples demonstrate that isogeometric surface discretization delivers more accurate and robust predictions of the response compared to Lagrange discretizations
    corecore